Central command contributes to increased blood flow in the noncontracting muscle at the start of one-legged dynamic exercise in humans.
نویسندگان
چکیده
Whether neurogenic vasodilatation contributes to exercise hyperemia is still controversial. Blood flow to noncontracting muscle, however, is chiefly regulated by a neural mechanism. Although vasodilatation in the nonexercising limb was shown at the onset of exercise, it was unclear whether central command or muscle mechanoreflex is responsible for the vasodilatation. To clarify this, using voluntary one-legged cycling with the right leg in humans, we measured the relative changes in concentrations of oxygenated-hemoglobin (Oxy-Hb) of the noncontracting vastus lateralis (VL) muscle with near-infrared spectroscopy as an index of tissue blood flow and femoral blood flow to the nonexercising leg. Oxy-Hb in the noncontracting VL and femoral blood flow increased (P < 0.05) at the start period of voluntary one-legged cycling without accompanying a rise in arterial blood pressure. In contrast, no increases in Oxy-Hb and femoral blood flow were detected at the start period of passive one-legged cycling, suggesting that muscle mechanoreflex cannot explain the initial vasodilatation of the noncontracting muscle during voluntary one-legged cycling. Motor imagery of the voluntary one-legged cycling increased Oxy-Hb of not only the right but also the left VL. Furthermore, an increase in Oxy-Hb of the contracting VL, which was observed at the start period of voluntary one-legged cycling, had the same time course and magnitude as the increase in Oxy-Hb of the noncontracting muscle. Thus it is concluded that the centrally induced vasodilator signal is equally transmitted to the bilateral VL muscles, not only during imagery of exercise but also at the start period of voluntary exercise in humans.
منابع مشابه
Central command generated prior to arbitrary motor execution induces muscle vasodilatation at the beginning of dynamic exercise.
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue ...
متن کاملEvidence for centrally induced cholinergic vasodilatation in skeletal muscle during voluntary one-legged cycling and motor imagery in humans
We have recently reported that central command contributes to increased blood flow in both noncontracting and contracting vastus lateralis (VL) muscles at the early period of voluntary one-legged cycling. The purpose of this study was to examine whether sympathetic cholinergic vasodilatation mediates the increases in blood flows of both muscles during one-legged exercise. Following intravenous ...
متن کاملThe need for speed: central command commanding vasodilation in human skeletal muscle?
MUSCULAR CONTRACTIONS LEAD to a large (2) and rapid (14) increase in muscle perfusion, providing a challenging field of research for over a century. A particular challenge has been deciphering the mechanism(s) that regulate the increase in vascular conductance that, in turn, enables the large change in muscle perfusion. To further complicate the problem, the mechanism(s) regulating blood flow c...
متن کاملDifferential contribution of ACh‐muscarinic and β‐adrenergic receptors to vasodilatation in noncontracting muscle during voluntary one‐legged exercise
We have demonstrated the centrally induced cholinergic vasodilatation in skeletal muscle at the early period of voluntary one-legged exercise and during motor imagery in humans. The purpose of this study was to examine whether central command may also cause β-adrenergic vasodilatation during the exercise and motor imagery. Relative changes in oxygenated hemoglobin concentration (Oxy-Hb) of bila...
متن کاملEffects of maximal and sub-maximal resistance exercise on muscle damage, inflammation, intrinsic antioxidant in non-athlete men
Introduction: The intensity of the strength training at the start for preventing muscle damage, inflammation and intrinsic antioxidant is not well defined. Intrestingly, the purpose of this study was to evaluate the effect of maximal and sub-maximal resistance exercise on muscle damage, inflammation and intrinsic antioxidant in non-athlete men. Materials and Methods: Nineteen young untrained me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 112 12 شماره
صفحات -
تاریخ انتشار 2012